Course Code	20EE3402	Year	II	Semester(s)	П
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	1.Basic Electrical and Electronics Engineering 2.Electrical Machines-I
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of three phase induction motors, synchronous machines					
	single phase motors and special electrical machines. (L2)					
CO2	Apply the basic knowledge to obtain the desired parameters and performance					
	characteristics of three phase induction motors. (L3)					
CO3	Apply the basic knowledge to obtain the desired parameters and performance					
	characteristics of synchronous machines, single phase motors and special electrical					
	machines. (L3)					
CO4	Analyze the concepts of torque equation, testing techniques and speed control					
	methods of three phase induction motor (L4)					
CO5	Analyze the concepts of synchronous machines, single phase motors and special electrical machines. (L4)					
CO6	Submit a report in three phase induction motors, synchronous machines, single phase					
	motors and special electrical machines.					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3												2	1
CO4		3											2	1
CO5		3											2	1
C06									3	3			2	1

SYLLABUS						
Unit	Contents					
No.		CO				
Ι	Three phase Induction motors: Concept of rotating magnetic field,	001				
	principle of operation, constructional details of squirrel-cage & slip-ring rotor	CO2				
	machines, slip, torque-slip characteristics, maximum torque, equivalent	CO4				
	circuit and phasor diagram of induction motor.	CO6				

-		
П	Testing of three-phase Induction Motor: Losses in three phase induction motor, efficiency, no-load and blocked rotor tests, circle diagram and performance evaluation of induction motor, cogging and crawling. Starting methods of Induction Motors: Necessity of starter, Direct on Line (DOL), star-delta starter, autotransformer starter and Rotor resistance starter. Speed Control of Three-phase Induction Motors: frequency, voltage and rotor resistance control methods, pole changing and cascading of motors. Principle of operation of induction generator.	CO1 CO2 CO4 CO6
III	Synchronous Generator	
	Constructional Features of wound rotor and salient pole machines, distributed and concentrated windings, distribution, pitch and winding factors, E.M.F Equation. harmonics in generated e.m.f. – suppression of harmonics, Voltage regulation by synchronous impedance method, M.M.F. method and Z.P.F. method, salient pole alternators, determination of X_d and X_q (Slip test), phasor diagrams. Parallel operation of alternators Synchronizing of alternators with infinite bus bars, synchronizing power and torque, parallel operation and load sharing.	CO1 CO3 CO5 CO6
IV	Synchronous Motors – Principle of Operation	CO1
	Theory of operation, phasor diagram, variation of current and power factor with	CO3
	excitation, synchronous condenser, mathematical analysis for power developed, V	CO5
	and inverted V curves, hunting and its suppression, methods of starting.	CO6
V	Single Phase Induction Motor	
	Classification of single phase induction motors, double revolving field theory – working principle of single phase single winding induction motor – equivalent circuit, no load and blocked rotor tests, spilt phase induction motor, capacitor start motor, capacitor start capacitor run motor, shaded pole motor, ratings and their applications. Special Electrical Machines Principle of Operation: Stepper Motor, Reluctance Motor, Universal Motor,	CO1 CO3 CO5 CO6
	BLDC Motor. (Theoretical Analysis Only)	

Learning Resources

1. Electrical Machinery by Dr. P. S Bimbhra- -7/e -Khanna Publishers,2018

2. Electric Machines by I.J. Nagarath and D.P. Kothari,4/e, McGraw Hill, 2010.

Reference Books

Text Books

- 1. Electrical Machines by J.B.Gupta, Kataria publications.
- 2. The Performance and Design of A.C.Machines by M.G.Say, ELBS and Pitman & Sons.
- 3. Electromachanics-III (Synchronous and single phase machines) by S.Kamakashiah, Right Publishers.

e- Resources

https://nptel.ac.in/courses/108/105/108105131/